Problem statement:
Create multiple lists of all possible permutations of sorts given an equivalence relation (such as comparing y-coodinates and ignoring the x-coordinates):
Solution:
Here is some working code to solve the problem:
from operator import itemgetter
from itertools import groupby, product, permutations, chain
points = [(1., 1.), (3., 0.),(-1., -1.) , (9., 2.), (-4., 2.) ]
points.sort(key=itemgetter(1))
groups = [list(permutations(g)) for k, g in groupby(points, itemgetter(1))]
for t in product(*groups):
print(list(chain.from_iterable(t)))
Final Result:
[(-1.0, -1.0), (3.0, 0.0), (1.0, 1.0), (9.0, 2.0), (-4.0, 2.0)]
[(-1.0, -1.0), (3.0, 0.0), (1.0, 1.0), (-4.0, 2.0), (9.0, 2.0)]
Explanation:
The initial sort orders the points by the y-axis only. This uses itemgetter() to extract field 1.
The groupby() step makes groups of points that have the same y-coordinate.
The permutations() step generates all possible orderings of each group.
The product() step generates the cartesian product of each of the permutation groups (so that each output has one element from each of the permutation groups).
The chain.from_iterable() step links consecutive tuples in the product into a single iterable which can be fed into list() to make the desired result.
Step-by-step:
1) Sort the points by the y-coordinate, ignoring the x-coordinate:
>>> points = [(1., 1.), (3., 0.),(-1., -1.) , (9., 2.), (-4., 2.)]
>>> points.sort(key=itemgetter(1))
>>> points
[(-1.0, -1.0), (3.0, 0.0), (1.0, 1.0), (9.0, 2.0), (-4.0, 2.0)]
>>> ^-----------^-----------^-----------^-------------^ ascending y-values
2) Create groups of points that have the same y-coordinate:
>>> pprint([list(g) for k, g in groupby(points, itemgetter(1))], width=40)
[[(-1.0, -1.0)], # y = -1.0
[(3.0, 0.0)], # y = 0.0
[(1.0, 1.0)], # y = 1.0
[(9.0, 2.0), (-4.0, 2.0)]] # y = 2.0
3) Generate all permutations of points that have the same y-coordinate:
>>> groups = [list(permutations(g)) for k, g in groupby(points, itemgetter(1))]
>>> pprint(groups)
[[((-1.0, -1.0),)], # y = -1.0
[((3.0, 0.0),)], # y = 0.0
[((1.0, 1.0),)], # y = 1.0
[((9.0, 2.0), (-4.0, 2.0)), ((-4.0, 2.0), (9.0, 2.0))]] # y = 2.0
4) Create all possible sequences with one element from each permutation group:
>>> for t in product(*groups):
print(t)
(((-1.0, -1.0),), ((3.0, 0.0),), ((1.0, 1.0),), ((9.0, 2.0), (-4.0, 2.0)))
(((-1.0, -1.0),), ((3.0, 0.0),), ((1.0, 1.0),), ((-4.0, 2.0), (9.0, 2.0)))
5) Combine each subsequence into a single list:
>>> for t in product(*groups):
list(chain.from_iterable(t))
[(-1.0, -1.0), (3.0, 0.0), (1.0, 1.0), (9.0, 2.0), (-4.0, 2.0)]
[(-1.0, -1.0), (3.0, 0.0), (1.0, 1.0), (-4.0, 2.0), (9.0, 2.0)]