After processing some input data, I got a RDD[(String, String, Long)], say input, in hand.
input: org.apache.spark.rdd.RDD[(String, String, Long)] = MapPartitionsRDD[9] at flatMap at <console>:54
The string fields here represent vertices of graph and long field is the weight of the edge.
To create a graph out of this, first I am inserting vertices into a map with a unique id if vertex is not known already. If it was already encountered, I use the vertex id that was assigned previously. Essentially, each vertex is assigned a unique id of type Long and then I want to create Edges.
Here is what I am doing:
var vertexMap = collection.mutable.Map[String, Long]()
var vid : Long = 0 // global vertex id counter
var srcVid : Long = 0 // source vertex id
var dstVid : Long = 0 // destination vertex id
val graphEdges = input.map {
case Row(src: String, dst: String, weight: Long) => (
if (vertexMap.contains(src)) {
srcVid = vertexMap(src)
if (vertexMap.contains(dst)) {
dstVid = vertexMap(dst)
} else {
vid += 1 // pick a new vertex id
vertexMap += (dst -> vid)
dstVid = vid
}
Edge(srcVid, dstVid, weight)
} else {
vid += 1
vertexMap(src) = vid
srcVid = vid
if (vertexMap.contains(dst)) {
dstVid = vertexMap(dst)
} else {
vid += 1
vertexMap(dst) = vid
dstVid = vid
}
Edge(srcVid, dstVid, weight)
}
}
val graph = Graph.fromEdges(graphEdges, 0)
println("num edges = " + graph.numEdges);
println("num vertices = " + graph.numVertices);
What I see is
graphEdges is of type RDD[org.apache.spark.graphx.Edge[Long]] and graph is of type Graph[Int,Long]
graphEdges: org.apache.spark.rdd.RDD[org.apache.spark.graphx.Edge[Long]] = MapPartitionsRDD[10] at map at <console>:64
graph: org.apache.spark.graphx.Graph[Int,Long] = org.apache.spark.graphx.impl.GraphImpl@1b48170a
but I get the following error, while printing the graph's edge and vertex count.
org.apache.spark.SparkException: Job aborted due to stage failure: Task 1 in stage 8.0 failed 1 times, most recent failure: Lost task 1.0 in stage 8.0 (TID 9, localhost, executor driver): ***scala.MatchError: (vertexA, vertexN, 2000
)*** (of class scala.Tuple3)
at $anonfun$1.apply(<console>:64)
at $anonfun$1.apply(<console>:64)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$class.foreach(Iterator.scala:893)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1336)
at org.apache.spark.graphx.EdgeRDD$$anonfun$1.apply(EdgeRDD.scala:107)
at org.apache.spark.graphx.EdgeRDD$$anonfun$1.apply(EdgeRDD.scala:105)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsWithIndex$1$$anonfun$apply$26.apply(RDD.scala:844)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsWithIndex$1$$anonfun$apply$26.apply(RDD.scala:844)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD$$anonfun$8.apply(RDD.scala:336)
at org.apache.spark.rdd.RDD$$anonfun$8.apply(RDD.scala:334)
at org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:1038)
at org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:1029)
at org.apache.spark.storage.BlockManager.doPut(BlockManager.scala:969)
at org.apache.spark.storage.BlockManager.doPutIterator(BlockManager.scala:1029)
at org.apache.spark.storage.BlockManager.getOrElseUpdate(BlockManager.scala:760)
at org.apache.spark.rdd.RDD.getOrCompute(RDD.scala:334)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:285)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:108)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:335)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
I don't understand where is the mismatch here.
Thanks @Joe K for the helpful tip. I started using zipIndex and code looks compact now, however graph instantiation still fails. Here is the updated code:
val vertices = input.map(r => r._1).union(input.map(r => r._2)).distinct.zipWithIndex
val graphEdges = input.map {
case (src, dst, weight) =>
Edge(vertices.lookup(src)(0), vertices.lookup(dst)(0), weight)
}
val graph = Graph.fromEdges(graphEdges, 0)
println("num edges = " + graph.numEdges);
So, from the original 3-tuple, I am forming a union of 1st and 2nd tuples (which are vertices), then assigning unique Ids to each after uniquifying them. I am then using their ids, while creating edges. However, it fails with following exception:
org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 15.0 failed 1 times, most recent failure: Lost task 0.0 in stage 15.0 (TID 23, localhost, executor driver): org.apache.spark.SparkException: This RDD lacks
a SparkContext. It could happen in the following cases:
(1) RDD transformations and actions are NOT invoked by the driver, but inside of other transformations; for example, rdd1.map(x => rdd2.values.count() * x) is invalid because the values transformation and count action cannot be performed
inside of the rdd1.map transformation. For more information, see SPARK-5063.
(2) When a Spark Streaming job recovers from checkpoint, this exception will be hit if a reference to an RDD not defined by the streaming job is used in DStream operations. For more information, See SPARK-13758.
at org.apache.spark.rdd.RDD.org$apache$spark$rdd$RDD$$sc(RDD.scala:89)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)
at org.apache.spark.rdd.PairRDDFunctions.lookup(PairRDDFunctions.scala:937)
at $anonfun$1.apply(<console>:55)
at $anonfun$1.apply(<console>:53)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$class.foreach(Iterator.scala:893)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1336)
at org.apache.spark.graphx.EdgeRDD$$anonfun$1.apply(EdgeRDD.scala:107)
Any thoughts ?