I am new to keras.
My goal is to have total of 4 max pooling layers. All of them take same input with shape (N, 256). The first layer does global max pooling and give 1 output. The second layer with N / 2 pooling size and N / 2 stride, gives 2 outputs. The third gives 4 outputs and the fourth gives 8 outputs. Here is my code.
test_x = np.random.rand(N, 256, 1)
model = Sequential()
input1 = Input(shape=test_x.shape, name='input1')
input2 = Input(shape=test_x.shape, name='input2')
input3 = Input(shape=test_x.shape, name='input3')
input4 = Input(shape=test_x.shape, name='input4')
max1 = MaxPooling2D(pool_size=(N, 256), strides=N)(input1)
max2 = MaxPooling2D(pool_size=(N / 2, 256), strides=N / 2)(input2)
max3 = MaxPooling2D(pool_size=(N / 4, 256), strides=N / 4)(input3)
max4 = MaxPooling2D(pool_size=(N / 8, 256), strides=N / 8)(input4)
mrg = Merge(mode='concat')([max1, max2, max3, max4])
After creating 4 max pooling layers, I try to merge them together, but keras gives this error.
ValueError: Dimension 1 in both shapes must be equal, but are 4 and 8 for 'merge_1/concat' (op: 'ConcatV2') with input shapes: [?,1,1,1], [?,2,1,1], [?,4,1,1], [?,8,1,1], [] and with computed input tensors: input[4] = <3>.
How can I solve this issue? Is merging the correct way to achieve my goal in keras?