I have a Mixed Integer Programming problem. The objective function is a minimization of the maximum variable value in the a vector. The variable is has an upper bound of 5. The problem is like this:
m = Model(solver = GLPKSolverMIP())
@objective(m, Min, max(x[i] for i=1:12))
@variable(m, 0 <= x[i] <= 5, Int)
@constraint(m, sum(x[i] for i=1:12) == 12)
status = solve(m)
The max variable is not part of the julia JuMP syntax. So I modified the problem to
t=1
while t<=5 && (status == :NotSolved || status == :Infeasible)
m = Model(solver = GLPKSolverMIP())
i = 1:12
@objective(m, Min, max(x[i] for i=1:12))
@variable(m, 0 <= x[i] <= t, Int)
@constraint(m, sum(x[i] for i=1:12) == 12)
status = solve(m)
t += 1
end
This solution does the job by solving the problem iterative for starting with a upper bound for the variable at 1 and then increase by one until the solutoin is feasible. Is this really the best way to do this?