How do I prove a lemma like the following:
Require Import Coq.Lists.List.
Lemma len_seq_n : forall start n, length (seq start n)=n.
I tried
Proof.
induction n.
simpl. auto. simpl.
and at this point Coq gives me
1 subgoal
start, n : nat
IHn : length (seq start n) = n
______________________________________(1/1)
S (length (seq (S start) n)) = S n
I'm not sure how to proceed from there.