I am training my model in Keras using a tensorflow backend and Jupyter-Notebook. While the MNIST Example updates the output of the training log after each batch, my new model on a different dataset outputs a new value for each batch. Now rather than using verbose=2, I would like to see the value being updated after every batch.
My fit function looks like this:
model.fit(X, y_train, validation_split=0.33, epochs=1, batch_size=200, verbose=1)
The output looks like this:
Train on 16415 samples, validate on 8085 samples
Epoch 1/1
16415/16415 [==============================] -
ETA: 73s - loss: 9.0281 -acc: 0.44 - ETA: 49s - loss: 9.0271 - acc: 0.44 -
ETA: 36s - loss: 8.7043 - acc: 0.46 - ETA: 33s - loss: 8.3979 - acc: 0.47 -
ETA: 31s - loss: 8.3549 - acc: 0.48 - ETA: 29s - loss: 8.3011 - acc: 0.48 -
ETA: 28s - loss: 8.1802 - acc: 0.49 - ETA: 27s - loss: 8.1220 - acc: 0.49 -
ETA: 26s - loss: 8.0995 - acc: 0.49 - ETA: 26s - loss: 8.1178 - acc: 0.49 -
ETA: 25s - loss: 8.1264 - acc: 0.49 - ETA: 24s - loss: 8.1274 - acc: 0.49 -
ETA: 24s - loss: 8.0880 - acc: 0.49 - ETA: 23s - loss: 8.0860 - acc: 0.49 -
ETA: 23s - loss: 8.0894 - acc: 0.49 - ETA: 22s - loss: 8.1303 - acc: 0.49 -
...
However, I would like to see only one line that updates after each batch like so:
Epoch 1/1
16415/16415 [==============================] -
ETA: 23s - loss: 9.0281 -acc: 0.44 - ETA: 22s - loss: 9.0271 - acc: 0.49
I can't find any option in the keras documentation besides setting verbose=2, but this does not update the log during training.