I have a piece of code that try to get output as the dimension of input that has either 0 or 1 instead of values of [0,1]. I tried to get binary activation function to evaluate binary dataset.
x = tf.placeholder("float", [None, COLUMN])
Wh = tf.Variable(tf.random_normal([COLUMN, UNITS_OF_HIDDEN_LAYER], mean=0.0, stddev=0.05))
h = tf.nn.sigmoid(tf.matmul(x, Wh))
Wo = tf.Variable(tf.random_normal([UNITS_OF_HIDDEN_LAYER, COLUMN], mean=0.0, stddev=0.05))
is_greater = tf.greater(tf.matmul(h, Wo), 0)
y = tf.to_float(is_greater)
# Objective functions
y_ = tf.placeholder("float", [None, COLUMN])
cost = tf.reduce_sum(tf.square(y_ - y)) / BATCH_SIZE
lr = tf.placeholder(tf.float32)
eps = tf.placeholder(tf.float32)
delta = tf.placeholder(tf.float32)
But it throws an error. Can you please find the error?
Backend TkAgg is interactive backend. Turning interactive mode on.
Traceback (most recent call last):
File "C:\Anaconda3\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 490, in apply_op
preferred_dtype=default_dtype)
File "C:\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py", line 741, in internal_convert_to_tensor
ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)
File "C:\Anaconda3\lib\site-packages\tensorflow\python\framework\constant_op.py", line 113, in _constant_tensor_conversion_function
return constant(v, dtype=dtype, name=name)
File "C:\Anaconda3\lib\site-packages\tensorflow\python\framework\constant_op.py", line 102, in constant
tensor_util.make_tensor_proto(value, dtype=dtype, shape=shape, verify_shape=verify_shape))
File "C:\Anaconda3\lib\site-packages\tensorflow\python\framework\tensor_util.py", line 364, in make_tensor_proto
raise ValueError("None values not supported.")
ValueError: None values not supported.