I would like to know how to plot lift curves in MLR especially for a Benchmark experiment with multiple algorithms and tasks. Help with ROC curve plotting will also be appreciated. Thanks.
Asked
Active
Viewed 1,694 times
-2
-
Have you had a look at [the tutorial](https://mlr-org.github.io/mlr-tutorial/devel/html/roc_analysis/index.html)? – Lars Kotthoff Sep 18 '17 at 21:56
1 Answers
3
I am not a mlr
user but here is a general way.
First some data:
Two class problem
iris2 = iris[iris$Species!="setosa",]
iris2$Species = factor(iris2$Species)
1st model:
log_model = glm(Species~., data = iris2, family = "binomial")
prob = predict(log_model, iris2, type = "response") #get the logistic regression prob
2nd model:
library(e1071)
svm_model = svm(Species~., data = iris2, probability = TRUE)
prob_svm = predict(svm_model, iris2, probability = TRUE)
prob_svm = attr(prob_svm , "probabilities")[,2] #get the probability for svm model
make a data frame from classes (1/0 coding) and additional columns for predicted probabilities for each model
for_lift = data.frame(Class = as.factor(ifelse(iris2$Species == "versicolor", 1, 0)), glm = prob, svm = prob_svm)
make a lift object
library(caret)
lift_obj = lift(Class ~ glm+svm, data = for_lift)
xyplot(lift_obj, auto.key = list(columns = 2,
lines = TRUE,
points = FALSE))
You can use the same data frame to plot ROC curves
library(pROC)
plot(pROC::roc(response = for_lift$Class,
predictor = for_lift$glm,
levels=c(0, 1)),
lwd=1.5)
plot(
pROC::roc(response = for_lift$Class,
predictor = for_lift$svm ,
levels=c(0, 1)),
add=T, lty=2, lwd=1.5)
legend(0.9, 0.9, c("logistic", "svm"), lty = c(1,2))
You can also check the ROCR package: https://cran.r-project.org/web/packages/ROCR/ROCR.pdf it has methods to plot both types of plots
Additionally if you are a ggplot2 user you can use the lift_obj
to plot lift and ROC curves with it also.
library(ggplot2)
p1 = ggplot(lift_obj$data)+
geom_line(aes(CumTestedPct, CumEventPct, color = liftModelVar))+
xlab("% Samples tested")+
ylab("% Samples found")+
scale_color_discrete(guide = guide_legend(title = "method"))+
geom_polygon(data = data.frame(x = c(0, lift_obj$pct, 100, 0),
y = c(0, 100, 100, 0)),
aes(x = x, y = y), alpha = 0.1)
p2 = ggplot(lift_obj$data)+
geom_line(aes(1-Sp , Sn, color = liftModelVar))+
scale_color_discrete(guide = guide_legend(title = "method"))
library(cowplot)
plot_grid(p1, p2, labels=c("lift", "ROC"))

missuse
- 19,056
- 3
- 25
- 47