I'm trying to use google cloud platform to deploy a model to support prediction.
I train the model (locally) with the following instruction
~/$ gcloud ml-engine local train --module-name trainer.task --package-path trainer
and everything works fine (...):
INFO:tensorflow:Restoring parameters from gs://my-bucket1/test2/model.ckpt-45000
INFO:tensorflow:Saving checkpoints for 45001 into gs://my-bucket1/test2/model.ckpt.
INFO:tensorflow:loss = 17471.6, step = 45001
[...]
Loss: 144278.046875
average_loss: 1453.68
global_step: 50000
loss: 144278.0
INFO:tensorflow:Restoring parameters from gs://my-bucket1/test2/model.ckpt-50000
Mean Square Error of Test Set = 593.1018482
But, when I run the following command to create a version,
gcloud ml-engine versions create Mo1 --model mod1 --origin gs://my-bucket1/test2/ --runtime-version 1.3
Then I get the following error.
ERROR: (gcloud.ml-engine.versions.create) FAILED_PRECONDITION: Field: version.deployment_uri
Error: SavedModel directory gs://my-bucket1/test2/ is expected to contain exactly one
of: [saved_model.pb, saved_model.pbtxt].- '@type': type.googleapis.com/google.rpc.BadRequest
fieldViolations:- description: 'SavedModel directory gs://my-bucket1/test2/ is expected
to contain exactly one of: [saved_model.pb, saved_model.pbtxt].'
field: version.deployment_uri
Here is a screenshot of my bucket. I have a saved model with 'pbtxt' format
Finally, I add the piece of code where I save the model in the bucket.
regressor = tf.estimator.DNNRegressor(feature_columns=feature_columns,
hidden_units=[40, 30, 20],
model_dir="gs://my-bucket1/test2",
optimizer='RMSProp'
)