I want to create a custom metric for pearson correlation as defined here
I'm not sure how exactly to apply it to batches of y_pred
and y_true
What I did:
def pearson_correlation_f(y_true, y_pred):
y_true,_ = tf.split(y_true[:,1:],2,axis=1)
y_pred, _ = tf.split(y_pred[:,1:], 2, axis=1)
fsp = y_pred - K.mean(y_pred,axis=-1,keepdims=True)
fst = y_true - K.mean(y_true,axis=-1, keepdims=True)
corr = K.mean((K.sum((fsp)*(fst),axis=-1))) / K.mean((
K.sqrt(K.sum(K.square(y_pred -
K.mean(y_pred,axis=-1,keepdims=True)),axis=-1) *
K.sum(K.square(y_true - K.mean(y_true,axis=-1,keepdims=True)),axis=-1))))
return corr
Is it necessary for me to use keepdims
and handle the batch dimension manually and the take the mean over it? Or does Keras somehow do this automatically?