I tried the seq2seq pytorch implementation available here seq2seq . After profiling the evaluation(evaluate.py) code, the piece of code taking longer time was the decode_minibatch method
def decode_minibatch(
config,
model,
input_lines_src,
input_lines_trg,
output_lines_trg_gold
):
"""Decode a minibatch."""
for i in xrange(config['data']['max_trg_length']):
decoder_logit = model(input_lines_src, input_lines_trg)
word_probs = model.decode(decoder_logit)
decoder_argmax = word_probs.data.cpu().numpy().argmax(axis=-1)
next_preds = Variable(
torch.from_numpy(decoder_argmax[:, -1])
).cuda()
input_lines_trg = torch.cat(
(input_lines_trg, next_preds.unsqueeze(1)),
1
)
return input_lines_trg
Trained the model on GPU and loaded the model in CPU mode to make inference. But unfortunately, every sentence seems to take ~10sec. Is slow prediction expected on pytorch?
Any fixes, suggestions to speed up would be much appreciated. Thanks.