I have recently posted a "very newie to R" question about the correct way of doing this, if you are interested in it you can find it [here].1
I have now managed to develop a simple R script that does the job, but now the results are what troubles me.
Long story short I'm using R to analyze lpp
(Linear Point Pattern) with mad.test
.That function performs an hypothesis test where the null hypothesis is that the points are randomly distributed. Currently I have 88 lpps to analyze, and according to the p.value
86 of them are randomly distributed and 2 of them are not.
These are the two not randomly distributed lpps.
Looking at them you can see some kind of clusters in the first one, but the second one only has three points, and seems to me that there is no way one can assure only three points are not corresponding to a random distribution. There are other tracks with one, two, three points but they all fall into the "random" lpps category, so I don't know why this one is different.
So here is the question: how many points are too little points for CSR testing?
I have also noticed that these two lpps have a much lower $statistic$rank
than the others. I have tried to find what that means but I'm clueless righ now, so here is another newie question: Is the $statistic$rank
some kind of quality analysis indicator, and thus can I use it to group my lpp analysis into "significant ones" and "too little points" ones?
My R script and all the shp files can be downloaded from here(850 Kb).
Thank you so much for your help.