First i create a predictive model in R using XGB. Now i want to
build a regression model using CatBoost to improve the results
Superconductors dataset convert into training dataset & test dataset
dataset_catboost20<-read.csv("train.csv")
dataset_catboost20
rows<-nrow(dataset_catboost20)
f<-0.65
upper_bound_catboost20<- floor(f*rows)
permuted_dataset_catboost20<- dataset_catboost20[sample(rows),]
train_dataset_catboost20<-permuted_dataset_catboost20[1:upper_bound_catboost20,]
train_dataset_catboost20
- There are 28 independent variable & one dependent variable. Now i
use the same formula as i use in XGB.Covert the formula into
**sparse.model.matrix both in XGB & Catboost. In XGB formula was
working but in Catboost it show error.**
Unsupported data type, expecting data.frame, got: dgCMatrix
Formula
train_dataset_catboost2020
y_traincatboost20=train_dataset_catboost20$critical_temp
catboost_trcontrol20<-trainControl(method="cv", number = 5,allowParallel = TRUE,verboseIter = FALSE,returnData = FALSE)
catboostGrid20 <- expand.grid(depth= c(2,6,8), learning_rate=0.1, iterations=100,
l2_leaf_reg=.05, rsm=.95, border_count=65)
catboost_model20 = train(
train_dataset_catboost2020,y_traincatboost20,method = catboost.caret,
logging_level="Silent",preProc=NULL,
tuneGrid = catboostGrid20,trControl=catboost_trcontrol20 )