I have a sparse 3D array of values. I am trying to turn each "point" into a fuzzy "sphere", by applying a Gaussian filter to the array.
I would like the original value at the point (x,y,z) to remain the same. I just want to create falloff values around this point... But applying the Gaussian filter changes the original (x,y,z) value as well.
I am currently doing this:
dataCube = scipy.ndimage.filters.gaussian_filter(dataCube, 3, truncate=8)
Is there a way for me to normalize this, or do something so that my original values are still in this new dataCube? I am not necessarily tied to using a Gaussian filter, if that is not the best approach.