I am posting this partly out of intrest on how the Task Parallel Library works, and for spreading knowledge. And also for investigating whether my "Cancellation" updates is the reason to a new issue where the user is suddenly logged out.
The project I am working on have these components:
- Web forms site. A website that acts as portal for administrating company vehicles. Further refered as "Web"
- WCF web service. A backend service on a seperate machine. Further refered as "Service"
- Third party service. Further refered as "3rd"
Note: I am using .NET 4.0. Therefore the newer updates to the Task Parallel Library are not available.
The issue that I was assigned to fix was that the login function was very slow and CPU intensive. This later was later admitted to be a problem in the Third party service. However I tried to optimize the login behavior as well as I could.
The login request and response doesn't contain perticularly much data. But for gathering the response data several API calls are made to the Third party service.
1. Pre changes
The Web invokes a WCF method on the Service for gathering "session data". This method would sometimes take so long that it would timeout (I think the timeout was set to 1 minute).
A pseudo representation of the "GetSessionData" method:
var agreements = getAgreements(request);
foreach (var agreement in agreements)
{
getAgreementDetails(agreement);
var customers = getCustomersWithAgreement(agreement);
foreach (var customer in customers)
{
getCustomerInfo(customer);
getCustomerAddress(customer);
getCustomerBranches(customer);
}
}
var person = getPerson(request);
var accounts = getAccount(person.Id);
foreach (var account in accounts)
{
var accountDetail = getAccountDetail(account.Id);
foreach (var vehicle in accountDetail.Vehicles)
{
getCurrentMilageReport(vehicle.Id);
}
}
return sessionData;
See gist for code snippet.
This method quickly becomes heavy the more agreements
and accounts
the user has.
2. Parallel.ForEach
I figured that I could replace foreach
loops with a Parallel.ForEach()
. This greatly improved the speed of the method for larger users.
See gist for code snippet.
3. Cancel
Another problem we had was that when the web services server is maxed on CPU usage, all method calls becomes much slower and could result in a timeout for the user. And a popular response to a timeout is to try again, so the user triggers another login attempt which is "queued"(?) due to the high CPU usage levels. This all while the first request has not returned yet.
We discovered that the request is still alive if the web site times out. So we decided to implement a similiar timeout on the Service side.
See gist for code snippet.
The idea is that GetSessionData(..) is to be invoked with a CancellationToken that will trigger Cancel after about the same time as the Web timeout. So that no work will be done if no one is there to show or use the results.
I also implemented the cancellation for the method calls to the Third party service.
Is it correct to share the same CancellationToken for all of the loops and service calls? Could there be an issue when all threads are "aborted" by throwing the cancel exception?
See gist for code snippet.