Alternatively
integrate(dnorm, mean=200, sd=20, lower= -Inf, upper= Inf, abs.tol = 0)$value
[1] 1
See here.
And to see what is going on, note the number of subdivisions in the following:
js <- integrate(dnorm, mean=200, sd=20, lower = -Inf, upper = Inf)
as <- integrate(dnorm, mean=200, sd=20, lower = -1e4, upper = 1e4)
cj <- integrate(dnorm, mean=200, sd=20, lower = -Inf, upper = Inf, abs.tol = 0)
str(js)
List of 5
$ value : num 1.43e-08
$ abs.error : num 2.77e-08
$ subdivisions: int 2
$ message : chr "OK"
$ call : language integrate(f = dnorm, lower = -Inf, upper = Inf, mean = 200, sd = 20)
- attr(*, "class")= chr "integrate"
str(as)
List of 5
$ value : num 1
$ abs.error : num 2e-07
$ subdivisions: int 9
$ message : chr "OK"
$ call : language integrate(f = dnorm, lower = -10000, upper = 10000, mean = 200, sd = 20)
- attr(*, "class")= chr "integrate"
str(cj)
List of 5
$ value : num 1
$ abs.error : num 9.37e-05
$ subdivisions: int 12
$ message : chr "OK"
$ call : language integrate(f = dnorm, lower = -Inf, upper = Inf, mean = 200, sd = 20, abs.tol = 0)
- attr(*, "class")= chr "integrate"