I have the following data:
+-----+----+-----+
|event|t |type |
+-----+----+-----+
| A |20 | 1 |
| A |40 | 1 |
| B |10 | 1 |
| B |20 | 1 |
| B |120 | 1 |
| B |140 | 1 |
| B |320 | 1 |
| B |340 | 1 |
| B |360 | 7 |
| B |380 | 1 |
+-----+-----+----+
And what I want is something like this:
+-----+----+----+
|event|t |grp |
+-----+----+----+
| A |20 |1 |
| A |40 |1 |
| B |10 |2 |
| B |20 |2 |
| B |120 |3 |
| B |140 |3 |
| B |320 |4 |
| B |340 |4 |
| B |380 |5 |
+-----+----+----+
Rules:
- Group all Values together that are at least 50ms away from each other. (column t) and belongs to the same event.
- When a row of type 7 appears take a cut too and remove this row. (see last row)
The first rule I can achieve with the answer from this thread:
Code:
val windowSpec= Window.partitionBy("event").orderBy("t")
val newSession = (coalesce(
($"t" - lag($"t", 1).over(windowSpec)),
lit(0)
) > 50).cast("bigint")
val sessionized = df.withColumn("session", sum(newSession).over(userWindow))
I have to say I can't figure it out how it works and don't know how to modify it so that rule 2 also works... Hope someone can give me some useful hints.
What I tried:
val newSession = (coalesce(
($"t" - lag($"t", 1).over(windowSpec)),
lit(0)
) > 50 || lead($"type",1).over(windowSpec) =!= 7 ).cast("bigint")
But only an error occurred: "Must follow method; cannot follow org.apache.spark.sql.Column val grp = (coalesce(