I struggle with the following task: I need to generate data from a truncated normal distribution. The sample mean and standard deviation should match exactly those specified in the population. This is what I have so far:
mean <- 100
sd <- 5
lower <- 40
upper <- 120
n <- 100
library(msm)
data <- as.numeric(mean+sd*scale(rtnorm(n, lower=40, upper=120)))
The sample that's created takes on exactly the mean and sd specified in the population. But some values exceed the intended bounds. Any idea how to fix this? I was thinking of just cutting off all values outside these bounds, but then mean and sd don't resemble those of the population anymore.