I wrote a simple script to test a model using PyCaffe
, but I noticed it is extremely slow! even on GPU! My test set has 82K samples of size 256x256 and when I ran the code which is given below, it takes hours to complete.
I even used batches of images instead of individual ones, yet nothing changes. Currently, it has been running for the past 5 hours, and only 50K samples are processed! What should I do to make it faster?
Can I completely avoid using transformer.preprocessing
? if so how?
Here is the snippet:
#run on gpu
caffe.set_mode_gpu()
#Extract mean from the mean image file
mean_blobproto_new = caffe.proto.caffe_pb2.BlobProto()
f = open(args.mean, 'rb')
mean_blobproto_new.ParseFromString(f.read())
mean_image = caffe.io.blobproto_to_array(mean_blobproto_new)
f.close()
predicted_lables = []
true_labels = []
misclassified =[]
class_names = ['unsafe','safe']
count = 0
correct = 0
batch=[]
plabe_ls = []
batch_size = 50
net1 = caffe.Net(args.proto, args.model, caffe.TEST)
transformer = caffe.io.Transformer({'data': net1.blobs['data'].data.shape})
transformer.set_transpose('data', (2,0,1))
transformer.set_mean('data', mean_image[0].mean(1).mean(1))
transformer.set_raw_scale('data', 255)
transformer.set_channel_swap('data', (2,1,0))
net1.blobs['data'].reshape(batch_size, 3,224, 224)
data_blob_shape = net1.blobs['data'].data.shape
data_blob_shape = list(data_blob_shape)
i=0
mu = np.array([ 104, 117, 123])#imagenet mean
#check and see if its lmdb or leveldb
if(args.db_type.lower() == 'lmdb'):
lmdb_env = lmdb.open(args.db_path)
lmdb_txn = lmdb_env.begin()
lmdb_cursor = lmdb_txn.cursor()
for key, value in lmdb_cursor:
count += 1
datum = caffe.proto.caffe_pb2.Datum()
datum.ParseFromString(value)
label = int(datum.label)
image = caffe.io.datum_to_array(datum).astype(np.uint8)
if(count % 5000 == 0):
print('count: ',count)
if(i < batch_size):
i+=1
inf= key,image,label
batch.append(inf)
if(i >= batch_size):
#process n image
ims=[]
for x in range(len(batch)):
ims.append(transformer.preprocess('data',batch[x][1]))# - mean_image[0].mean(1).mean(1) )
net1.blobs['data'].data[...] = ims[:]
out_1 = net1.forward()
plbl = np.asarray( out_1['pred'])
plbl = plbl.argmax(axis=1)
for j in range(len(batch)):
if (plbl[j] == batch[j][2]):
correct+=1
else:
misclassified.append(batch[j][0])
predicted_lables.append(plbl[j])
true_labels.append(batch[j][2])
batch.clear()
i=0
Update:
By replacing
for x in range(len(batch)):
ims.append(transformer.preprocess('data',batch[x][1]))
net1.blobs['data'].data[...] = ims[:]
with
for x in range(len(batch)):
img = batch[x][1]
ims.append(img[:,0:224,0:224])
82K samples were processed in less than a minute. The culprit is indeed the preprocess method and I have no idea why it acts like this!
Anyway, I can't use mean file this way. I tried to do
ims.append(img[:,0:224,0:224] - mean.mean(1).mean(1))
as well but faced with this error:
ValueError: operands could not be broadcast together with shapes (3,224,224) (3,)
I also need to find a better way for cropping the image, I don't know if I need to resize it back to 224? or I should use crops just like caffe?