- Spark 2.2.0
I have the following code converted from SQL script. It has been running for two hours and it's still running. Even slower than SQL Server. Is anything not done correctly?
The following is the plan,
- Push
table2
to all executors - Partition
table1
and distribute the partitions to executors. - And each row in
table2/t2
joins (cross join) each partition oftable1
.
So the calculation on the result of the cross-join can be run distributed/parallelly. (I wanted to, for example suppose I have 16 executors, keep a copy of t2 on all the 16 executors. Then divide table 1 into 16 partitions, one for each executor. Then each executor do the calculation on one partition of table 1 and t2.)
case class Cols (Id: Int, F2: String, F3: BigDecimal, F4: Date, F5: String,
F6: String, F7: BigDecimal, F8: String, F9: String, F10: String )
case class Result (Id1: Int, ID2: Int, Point: Int)
def getDataFromDB(source: String) = {
import sqlContext.sparkSession.implicits._
sqlContext.read.format("jdbc").options(Map(
"driver" -> "com.microsoft.sqlserver.jdbc.SQLServerDriver",
"url" -> jdbcSqlConn,
"dbtable" -> s"$source"
)).load()
.select("Id", "F2", "F3", "F4", "F5", "F6", "F7", "F8", "F9", "F10")
.as[Cols]
}
val sc = new SparkContext(conf)
val table1:DataSet[Cols] = getDataFromDB("table1").repartition(32).cache()
println(table1.count()) // about 300K rows
val table2:DataSet[Cols] = getDataFromDB("table2") // ~20K rows
table2.take(1)
println(table2.count())
val t2 = sc.broadcast(table2)
import org.apache.spark.sql.{functions => func}
val j = table1.joinWith(t2.value, func.lit(true))
j.map(x => {
val (l, r) = x
Result(l.Id, r.Id,
(if (l.F1!= null && r.F1!= null && l.F1== r.F1) 3 else 0)
+(if (l.F2!= null && r.F2!= null && l.F2== r.F2) 2 else 0)
+ ..... // All kind of the similiar expression
+(if (l.F8!= null && r.F8!= null && l.F8== r.F8) 1 else 0)
)
}).filter(x => x.Value >= 10)
println("Total count %d", j.count()) // This takes forever, the count will be about 100
How to rewrite it with Spark idiomatic way?
Ref: https://forums.databricks.com/questions/6747/how-do-i-get-a-cartesian-product-of-a-huge-dataset.html