okay, so I figured it out using the thread from Daniils blog
http://warmspringwinds.github.io/tensorflow/tf-slim/2016/12/21/tfrecords-guide/
However my current implimentation creates multiple TFRecords, and I think it needs to be a single TFRecord, so trying to figure out how to make it a single TFRecord. How do I do that?
Then I can validate it using a TFRecord Reading script to read it back and check it is in the right format for Tensor Flow. I currently get errors using the reading script.
from PIL import Image
import numpy as np
import tensorflow as tf
import os
def _bytes_feature(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
def _int64_feature(value):
return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))
path = 'test/'
output = 'output/'
fileList = [os.path.join(dirpath, f) for dirpath, dirnames, files in os.walk(path) for f in files if f.endswith('.tif')]
print (fileList)
for filename in fileList:
basename = os.path.basename(filename)
file_name = basename[:-4]
print ("processing file: " , filename)
print (file_name)
if not os.path.exists(output):
os.mkdir(output)
writer = tf.python_io.TFRecordWriter(output+ file_name + '.tfrecord')
img = Image.open(filename)
imgArray = np.zeros( ( img.n_frames, img.size[1], img.size[0] ),np.uint8 )
## Imports Multi-Layer file into 3D Numpy Array.
try:
for frame in range(0,img.n_frames):
img.seek( frame )
imgArray[frame,:,:] = img
frame = frame + 1
except (EOFError): img.seek( 0 )
pass
print ("print img size:" , img.size)
print ("print image shape: " , imgArray.shape)
print ("print image size: " , imgArray.size)
annotation = np.array(Image.open(filename))
height = imgArray.shape[0]
width = imgArray.shape[1]
depth = imgArray.shape[2]
img_raw = imgArray.tostring()
annotation_raw = annotation.tostring()
example = tf.train.Example(features=tf.train.Features(feature={
'height': _int64_feature(height),
'width': _int64_feature(width),
'depth': _int64_feature(depth), # for 3rd dimension
'image_raw': _bytes_feature(img_raw),
'mask_raw': _bytes_feature(annotation_raw)}))
writer.write(example.SerializeToString())
My current TFRecords Reading script
import tensorflow as tf
import os
def read_and_decode(filename_queue):
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(
serialized_example,
# Defaults are not specified since both keys are required.
features={
'image_raw': tf.FixedLenFeature([], tf.string),
'label': tf.FixedLenFeature([], tf.int64),
'height': tf.FixedLenFeature([], tf.int64),
'width': tf.FixedLenFeature([], tf.int64),
'depth': tf.FixedLenFeature([], tf.int64)
})
image = tf.decode_raw(features['image_raw'], tf.uint8)
label = tf.cast(features['label'], tf.int32)
height = tf.cast(features['height'], tf.int32)
width = tf.cast(features['width'], tf.int32)
depth = tf.cast(features['depth'], tf.int32)
return image, label, height, width, depth
with tf.Session() as sess:
filename_queue = tf.train.string_input_producer(["output/A.3.1.tfrecord"])
image, label, height, width, depth = read_and_decode(filename_queue)
image = tf.reshape(image, tf.stack([height, width, 3]))
image.set_shape([32,32,3])
init_op = tf.initialize_all_variables()
sess.run(init_op)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
for i in range(1000):
example, l = sess.run([image, label])
print (example,l)
coord.request_stop()
coord.join(threads)
receiving the error:-
InvalidArgumentError (see above for traceback): Name: , Feature: label (data type: int64) is required but could not be found.
Images are grayscale multi-page