I have a collection of documents, each belonging to a specific page. I've computed the TFIDF scores across each document, but what I want to do is average the TFIDF score for each page based on its documents.
The desired output is an N (page) x M (vocabulary) matrix. How would I go about doing this in Spark/PySpark?
from pyspark.ml.feature import CountVectorizer, IDF, Tokenizer, StopWordsRemover
from pyspark.ml import Pipeline
tokenizer = Tokenizer(inputCol="message", outputCol="tokens")
remover = StopWordsRemover(inputCol=tokenizer.getOutputCol(), outputCol="filtered")
countVec = CountVectorizer(inputCol=remover.getOutputCol(), outputCol="features", binary=True)
idf = IDF(inputCol=countVec.getOutputCol(), outputCol="idffeatures")
pipeline = Pipeline(stages=[tokenizer, remover, countVec, idf])
model = pipeline.fit(sample_results)
prediction = model.transform(sample_results)
Output from the pipeline is in the format below. One row per document.
(466,[10,19,24,37,46,61,62,63,66,67,68,86,89,105,107,129,168,217,219,289,310,325,377,381,396,398,411,420,423],[1.6486586255873816,1.6486586255873816,1.8718021769015913,1.8718021769015913,2.159484249353372,2.159484249353372,2.159484249353372,2.159484249353372,2.159484249353372,2.159484249353372,2.159484249353372,2.159484249353372,2.159484249353372,2.159484249353372,2.159484249353372,2.5649493574615367,2.5649493574615367,2.5649493574615367,2.5649493574615367,2.5649493574615367,2.5649493574615367,2.5649493574615367,2.5649493574615367,2.5649493574615367,2.5649493574615367,2.5649493574615367,2.5649493574615367,2.5649493574615367,2.5649493574615367])