I have a NN that has two identical CNN (similar to Siamese network), then merges the outputs, and intends to apply a custom loss function on the merged output, something like this:
----------------- -----------------
| input_a | | input_b |
----------------- -----------------
| base_network | | base_network |
------------------------------------------
| processed_a_b |
------------------------------------------
In my custom loss function, I need to break y vertically into two pieces, and then apply categorical cross entropy loss on each piece. However, I keep getting dtype errors from my loss function, e.g.:
ValueError Traceback (most recent call last) in () ----> 1 model.compile(loss=categorical_crossentropy_loss, optimizer=RMSprop())
/usr/local/lib/python3.5/dist-packages/keras/engine/training.py in compile(self, optimizer, loss, metrics, loss_weights, sample_weight_mode, **kwargs) 909 loss_weight = loss_weights_list[i] 910 output_loss = weighted_loss(y_true, y_pred, --> 911 sample_weight, mask) 912 if len(self.outputs) > 1: 913 self.metrics_tensors.append(output_loss)
/usr/local/lib/python3.5/dist-packages/keras/engine/training.py in weighted(y_true, y_pred, weights, mask) 451 # apply sample weighting 452 if weights is not None: --> 453 score_array *= weights 454 score_array /= K.mean(K.cast(K.not_equal(weights, 0), K.floatx())) 455 return K.mean(score_array)
/usr/local/lib/python3.5/dist-packages/tensorflow/python/ops/math_ops.py in binary_op_wrapper(x, y) 827 if not isinstance(y, sparse_tensor.SparseTensor): 828 try: --> 829 y = ops.convert_to_tensor(y, dtype=x.dtype.base_dtype, name="y") 830 except TypeError: 831 # If the RHS is not a tensor, it might be a tensor aware object
/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/ops.py in convert_to_tensor(value, dtype, name, preferred_dtype) 674 name=name, 675 preferred_dtype=preferred_dtype, --> 676 as_ref=False) 677 678
/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/ops.py in internal_convert_to_tensor(value, dtype, name, as_ref, preferred_dtype) 739 740 if ret is None: --> 741 ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref) 742 743 if ret is NotImplemented:
/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/ops.py in _TensorTensorConversionFunction(t, dtype, name, as_ref) 612 raise ValueError( 613 "Tensor conversion requested dtype %s for Tensor with dtype %s: %r" --> 614 % (dtype.name, t.dtype.name, str(t))) 615 return t 616
ValueError: Tensor conversion requested dtype float64 for Tensor with dtype float32: 'Tensor("processed_a_b_sample_weights_1:0", shape=(?,), dtype=float32)'
Here is a MWE to reproduce the error:
import tensorflow as tf
from keras import backend as K
from keras.layers import Input, Dense, merge, Dropout
from keras.models import Model, Sequential
from keras.optimizers import RMSprop
import numpy as np
# define the inputs
input_dim = 10
input_a = Input(shape=(input_dim,), name='input_a')
input_b = Input(shape=(input_dim,), name='input_b')
# define base_network
n_class = 4
base_network = Sequential(name='base_network')
base_network.add(Dense(8, input_shape=(input_dim,), activation='relu'))
base_network.add(Dropout(0.1))
base_network.add(Dense(n_class, activation='relu'))
processed_a = base_network(input_a)
processed_b = base_network(input_b)
# merge left and right sections
processed_a_b = merge([processed_a, processed_b], mode='concat', concat_axis=1, name='processed_a_b')
# create the model
model = Model(inputs=[input_a, input_b], outputs=processed_a_b)
# custom loss function
def categorical_crossentropy_loss(y_true, y_pred):
# break (un-merge) y_true and y_pred into two pieces
y_true_a, y_true_b = tf.split(value=y_true, num_or_size_splits=2, axis=1)
y_pred_a, y_pred_b = tf.split(value=y_pred, num_or_size_splits=2, axis=1)
loss = K.categorical_crossentropy(output=y_pred_a, target=y_true_a) + K.categorical_crossentropy(output=y_pred_b, target=y_true_b)
return K.mean(loss)
# compile the model
model.compile(loss=categorical_crossentropy_loss, optimizer=RMSprop())