I'm running out of memory when I try to fit a random forest model on my dataset (5888 bytes) using the rsparkling
random forest function with the following:
h2o.randomForest(x = x,
y = y,
training_frame = trainDatasetTopTen_tbl,
nfolds = 5).
My configuration setting:
config <- spark_config()
config$spark.driver.cores <- 3
config$spark.driver.memory <- "3.4G"
config$spark.driver.extraJavaOptions <- "append -XX:MaxPermSize= 3.8G"
sc <- spark_connect(master = 'local', config = config,
version = '2.1.0')
The memory available in my machine is 4 GB.
H2O cluster info is:
R is connected to the H2O cluster:
H2O cluster uptime: 30 minutes 376 milliseconds
H2O cluster version: 3.10.5.2
H2O cluster version age: 24 days
H2O cluster name: sparkling-water-mubarak_local-1499963226139
H2O cluster total nodes: 1
H2O cluster total memory: 0.7 GB
H2O cluster total cores: 4
H2O cluster allowed cores: 4
H2O cluster healthy: TRUE
H2O Connection ip: 127.0.0.1
H2O Connection port: 54321
H2O Connection proxy: NA
H2O Internal Security: FALSE
R Version: R version 3.4.0 (2017-04-21)
H2O started log info for Java (under http://localhost:4040/sparkling-water/):
thread INFO: Java heap totalMemory: 461.0 MB Java heap maxMemory: 910.5 MB thread INFO: Java version: Java 1.8.0_65 (from Oracle Corporation) thread INFO: JVM launch parameters: [-Xmx1g]
Therefore my question is: how to increase JVM parameter from 1GB to 3 GB?
My devtools information is:
Session info --------------------------------------
setting value
version R version 3.4.0 (2017-04-21)
system x86_64, darwin15.6.0
ui RStudio (1.0.143)
language (EN)
collate en_GB.UTF-8
tz Europe/London
date 2017-07-13`
package * version date
base * 3.4.0 2017-04-21
caret * 6.0-76 2017-04-18
datasets * 3.4.0 2017-04-21
dplyr * 0.7.1 2017-06-22
ggplot2 * 2.2.1 2016-12-30
graphics * 3.4.0 2017-04-21
grDevices * 3.4.0 2017-04-21
h2o * 3.10.5.2 2017-07-01
lattice * 0.20-35 2017-03-25
methods * 3.4.0 2017-04-21
rsparkling * 0.2.1 2017-06-30
sparklyr * 0.5.6-9011 2017-07-05
stats * 3.4.0 2017-04-21
utils * 3.4.0 2017-04-21`
Thank you, MJ