-2

I have a sentence that describes a circuit, like this:

I x (Q1 x Q0 + not Q1 x not Q0) + not I x (not Q1 x Q0 + Q1 x not Q0)

I have translated it like this:

I and ((Q1 and Q0) or (!Q1 and !Q0)) or !I and ((!Q1 and Q0) or (Q1 and !Q0)) ->
I and ((Q1 and Q0) or !(Q1 or Q0)) or !I and ((!Q1 and Q0) or (Q1 and !Q0)) ->
I and (!(Q1 xor Q0)) or !I and (Q1 xor Q0)

but I get stuck at this point, is there an easy way to make it even more compact or I'll have to solve the bit-by-bit table?

Stanislav Kralin
  • 11,070
  • 4
  • 35
  • 58
Mattia Righetti
  • 1,265
  • 1
  • 18
  • 31

1 Answers1

1

Reduction

1. I and ((Q1 and Q0) or (!Q1 and !Q0)) or !I and ((!Q1 and Q0) or (Q1 and !Q0))
   ≡
2. I and ((Q1 and Q0) or !(Q1 or Q0)) or !I and ((!Q1 and Q0) or (Q1 and !Q0))
   ≡
3. I and !(!(Q1 and Q1) and (Q1 or Q0)) or !I and ((!Q1 and Q0) or (Q1 and !Q0))
   ≡
4. I and !(Q0 xor Q1) or !I and (Q0 xor Q1)
   ≡
5. I xor (Q0 xor Q1)
   ≡
6. I xor Q0 xor Q1

Reasons

1 ≡ 2: De Morgan

2 ≡ 3: De Morgan

3 ≡ 4: Def of xor

4 ≡ 5: Def of xor

5 ≡ 6: Associativity of xor

Leandro Caniglia
  • 14,495
  • 4
  • 29
  • 51