I would like to find the best-fit axis
of points that are on a cylindrical surface, using python.
Seems that scipy.linalg.svd
is the function to look for.
So to test out, I decide to generate some points, function makeCylinder
, from this thread How to generate regular points on cylindrical surface, and estimate the axis.
This is the code:
def rotMatrixAxisAngle(axis, theta, theta2deg=False):
# Load
from math import radians, cos, sin
from numpy import array
# Convert to radians
if theta2deg:
theta = radians(theta)
#
a = cos(theta/2.0)
b, c, d = -array(axis)*sin(theta/2.0)
# Rotation matrix
R = array([ [a*a+b*b-c*c-d*d, 2.0*(b*c-a*d), 2.0*(b*d+a*c)],
[2.0*(b*c+a*d), a*a+c*c-b*b-d*d, 2.0*(c*d-a*b)],
[2.0*(b*d-a*c), 2.0*(c*d+a*b), a*a+d*d-b*b-c*c] ])
return R
def makeCylinder(radius, length, nlength, alpha, nalpha, center, orientation):
# Load
from numpy import array, allclose, linspace, tile, vstack
from numpy import pi, cos, sin, arccos, cross
from numpy.linalg import norm
# Create the length array
I = linspace(0, length, nlength)
# Create alpha array avoid duplication of endpoints
if int(alpha) == 360:
A = linspace(0, alpha, num=nalpha, endpoint=False)/180.0*pi
else:
A = linspace(0, alpha, num=nalpha)/180.0*pi
# Calculate X and Y
X = radius * cos(A)
Y = radius * sin(A)
# Tile/repeat indices so all unique pairs are present
pz = tile(I, nalpha)
px = X.repeat(nlength)
py = Y.repeat(nlength)
# Points
points = vstack(( pz, px, py )).T
## Shift to center
points += array(center) - points.mean(axis=0)
# Orient tube to new vector
ovec = orientation / norm(orientation)
cylvec = array([1,0,0])
if allclose(cylvec, ovec):
return points
# Get orthogonal axis and rotation
oaxis = cross(ovec, cylvec)
rot = arccos(ovec.dot(cylvec))
R = rotMatrixAxisAngle(oaxis, rot)
return points.dot(R)
from numpy.linalg import norm
from numpy.random import rand
from scipy.linalg import svd
for i in xrange(100):
orientation = rand(3)
orientation[0] = 0
orientation /= norm(orientation)
# Generate sample points
points = makeCylinder(radius = 3.0,
length = 20.0, nlength = 20,
alpha = 360, nalpha = 30,
center = [0,0,0],
orientation = orientation)
# Least Square
uu, dd, vv = svd(points - points.mean(axis=0))
asse = vv[0]
assert abs( abs(orientation.dot(asse)) - 1) <= 1e-4, orientation.dot(asse)
As you can see, I generate multiple cylinder whose axis is random (rand(3)
).
The funny thing is that svd
returns an axis that is absolutely perfect if the first component of orientation
is zero (orientation[0] = 0
).
If I comment this line the estimated axis is way off.
Update 1: Even using leastsq on a cylinder equation returns the same behavior:
def bestLSQ1(points):
from numpy import array, sqrt
from scipy.optimize import leastsq
# Expand
points = array(points)
x = points[:,0]
y = points[:,1]
z = points[:,2]
# Calculate the distance of each points from the center (xc, yc, zc)
# http://geometry.puzzles.narkive.com/2HaVJ3XF/geometry-equation-of-an-arbitrary-orientated-cylinder
def calc_R(xc, yc, zc, u1, u2, u3):
return sqrt( (x-xc)**2 + (y-yc)**2 + (z-zc)**2 - ( (x-xc)*u1 + (y-yc)*u2 + (z-zc)*u3 )**2 )
# Calculate the algebraic distance between the data points and the mean circle centered at c=(xc, yc, zc)
def dist(c):
Ri = calc_R(*c)
return Ri - Ri.mean()
# Axes - Minimize residu
xM, yM, zM = points.mean(axis=0)
# Calculate the center
center, ier = leastsq(dist, (xM, yM, zM, 0, 0, 1))
xc, yc, zc, u1, u2, u3 = center
asse = u1, u2, u3
return asse