The training parameters used were recorded in a comment in dlib's code here http://dlib.net/dlib/image_processing/frontal_face_detector.h.html. For reference:
It is built out of 5 HOG filters. A front looking, left looking, right looking,
front looking but rotated left, and finally a front looking but rotated right one.
Moreover, here is the training log and parameters used to generate the filters:
The front detector:
trained on mirrored set of labeled_faces_in_the_wild/frontal_faces.xml
upsampled each image by 2:1
used pyramid_down<6>
loss per missed target: 1
epsilon: 0.05
padding: 0
detection window size: 80 80
C: 700
nuclear norm regularizer: 9
cell_size: 8
num filters: 78
num images: 4748
Train detector (precision,recall,AP): 0.999793 0.895517 0.895368
singular value threshold: 0.15
The left detector:
trained on labeled_faces_in_the_wild/left_faces.xml
upsampled each image by 2:1
used pyramid_down<6>
loss per missed target: 2
epsilon: 0.05
padding: 0
detection window size: 80 80
C: 250
nuclear norm regularizer: 8
cell_size: 8
num filters: 63
num images: 493
Train detector (precision,recall,AP): 0.991803 0.86019 0.859486
singular value threshold: 0.15
The right detector:
trained left-right flip of labeled_faces_in_the_wild/left_faces.xml
upsampled each image by 2:1
used pyramid_down<6>
loss per missed target: 2
epsilon: 0.05
padding: 0
detection window size: 80 80
C: 250
nuclear norm regularizer: 8
cell_size: 8
num filters: 66
num images: 493
Train detector (precision,recall,AP): 0.991781 0.85782 0.857341
singular value threshold: 0.19
The front-rotate-left detector:
trained on mirrored set of labeled_faces_in_the_wild/frontal_faces.xml
upsampled each image by 2:1
used pyramid_down<6>
rotated left 27 degrees
loss per missed target: 1
epsilon: 0.05
padding: 0
detection window size: 80 80
C: 700
nuclear norm regularizer: 9
cell_size: 8
num images: 4748
singular value threshold: 0.12
The front-rotate-right detector:
trained on mirrored set of labeled_faces_in_the_wild/frontal_faces.xml
upsampled each image by 2:1
used pyramid_down<6>
rotated right 27 degrees
loss per missed target: 1
epsilon: 0.05
padding: 0
detection window size: 80 80
C: 700
nuclear norm regularizer: 9
cell_size: 8
num filters: 89
num images: 4748
Train detector (precision,recall,AP): 1 0.897369 0.897369
singular value threshold: 0.15
What the parameters are and how to set them is all explained in the dlib documentation. There is also a paper that describes the training algorithm: Max-Margin Object Detection.
Yes, it can take a lot of RAM to run the trainer.