my function is :
def groupl1(x):
return tf.reduce_sum(tf.sqrt(tf.to_float(x.get_shape()[1])) * tf.sqrt(tf.reduce_sum(x ** 2, axis=1)))
and when i put it in my code:
elif loss == 'rmse,gl':
weightss=tf.trainable_variables()
reg=tf.contrib.layers.apply_regularization(groupl1,weightss)
loss = tf.sqrt(tf.reduce_mean(tf.square(tf.subtract(x_, decoded)))
)+reg*0.0001
it doesn't work with an error:
Traceback (most recent call last):
File "L1_02.py", line 45, in <module>
train_X_=model.fit_transform(train_X)
File "/home/hjson/tmp/BRCA/libsdae/stacked_autoencoder.py", line 93, in fit_transform
self.fit(x)
File "/home/hjson/tmp/BRCA/libsdae/stacked_autoencoder.py", line 70, in fit
print_step=self.print_step, lambda_=self.lambda_)
File "/home/hjson/tmp/BRCA/libsdae/stacked_autoencoder.py", line 138, in run
reg=tf.contrib.layers.apply_regularization(groupl1,weightss)
NameError: global name 'groupl1' is not defined
I'm confused because I clearly stated groupl1 function in my code. What is my problem here?