I am trying to find solutions to nonlinear systems of matrix equations with Mathematica. The solution space is too complicated to try to use Solve, and thus I have tried to use FindInstance. Here is this simplest example of a nonlinear system that I am trying to find a solution for:
T + A + C + CBA = 0
I - A - C - ABC = 0
where A, B, C are any matrices, Det[T] = 1, and I is the identity matrix with dimension of 2x2. I also want all matrices to have only integer entries. I am using the command
FindInstance[{T + a + c + c.b.a == z, IdentityMatrix[2] - a - c -
a.b.c == z, Det[T]==1} , Integers]
where z is the zero matrix. However, every time I do so it responds with "FindInstance::exvar: The system contains a nonconstant expression a independent of variables {Integers}."
Retrying the command as
FindInstance[{T + a + c + c.b.a == z,
IdentityMatrix[2] - a - c - a.b.c == z,
Det[T] == 1} /. {a -> {{1, 0}, {0, 1}}}, Integers]
returns "FindInstance::exvar: The system contains a nonconstant expression b independent of variables {Integers}."
How can I use FindInstance or Solve to find a solution to this system without finding the solution myself by fixing "independent variables?"