Long story short, what I want here is to declare a templated type in a base class and be able to access that type A<T>
such that the base class B
contains it and the derived class C
is able to access it as C::A<T>
. I did try declaring an int
inside of class B
and that can be accessed from the derived C
class as C::int
, here's the error!
||In constructor ‘D::D()’:|
|74|error: no match for ‘operator=’ (operand types are ‘A<C*>’ and ‘A<B*>’)|
|4|note: candidate: A<C*>& A<C*>::operator=(const A<C*>&)|
|4|note: no known conversion for argument 1 from ‘A<B*>’ to ‘const A<C*>&’|
And this is the code that does compile ( comment A<B*> i;
and uncomment A<C*> i;
to get the error).
#include <iostream>
//class with a template parameter
template <class a>
class A
{
private:
int somevalue;
public:
A(){}
~A(){}
void print()
{
std::cout<<somevalue<<std::endl;
}
};
//1. could forward declare
class C;
class B
{
protected:
A<B*> i;
//2. and then use
//A<C*> i;
public:
B(){}
~B(){}
A<B*> get()
{
return i;
}
/*
//3. use this return instead
A<C*> get()
{
return i;
}
*/
};
//specialization of B that uses B's methods variables
class C : public B
{
protected:
public:
C(){}
virtual ~C(){}
void method()
{
B::i.print();
}
};
//class D that inherits the specialization of C
class D : public C
{
private:
A<B*> i;//works
//4. but I want the inherited type to work like
//A<C*> i;// so that the type C* is interpreted as B*
public:
D()
{
this->i = C::i;
}
~D(){}
};
///////////////////////////////////////////////////////////////////////
int main()
{
D* d = new D();
delete d;
return 0;
}