I am trying to make a deep learning model to detect and read number plates using deep learning techniques like CNN. I would be making a model in tensorflow. But i still don't know what can be the best approach to build such model.
i have checked few models like this https://matthewearl.github.io/2016/05/06/cnn-anpr/
i have also checked some research papers but none show the exact way.
So the steps what i am planning to follow are
Image preprocessing using opencv ( grayscale,transformations etc i dont know much about this part)
Licence plate Detection (probably by sliding window method)
- Train using CNN by building a synthetic dataset as in the above link.
My questions
Is there any better way to do this?
Can RNN also be combined after CNN for variable length number?
Should i prefer detecting and recognising individual characters rather the whole plate?
There are many old methods too who prefer image preprocessing and the directly passing to OCR.What will be the best?
PS- i want to make a commercial real time system. So i need good accuracy.