In every project I've started in languages without type systems, I eventually begin to invent a runtime type system. Maybe the term "type system" is too strong; at the very least, I create a set of type/value-range validators when I'm working with complex data types, and then I feel the need to be paranoid about where data types can be created and modified.
I hadn't thought twice about it until now. As an independent developer, my methods have been working in practice on a number of small projects, and there's no reason they'd stop working now.
Nonetheless, this must be wrong. I feel as if I'm not using dynamically-typed languages "correctly". If I must invent a type system and enforce it myself, I may as well use a language that has types to begin with.
So, my questions are:
- Are there existing programming paradigms (for languages without types) that avoid the necessity of using or inventing type systems?
- Are there otherwise common recommendations on how to solve the problems that static typing solves in dynamically-typed languages (without sheepishly reinventing types)?
Here is a concrete example for you to consider. I'm working with datetimes and timezones in erlang (a dynamic, strongly typed language). This is a common datatype I work with:
{{Y,M,D},{tztime, {time, HH,MM,SS}, Flag}}
... where {Y,M,D}
is a tuple representing a valid date (all entries are integers), tztime
and time
are atoms, HH,MM,SS
are integers representing a sane 24-hr time, and Flag
is one of the atoms u,d,z,s,w
.
This datatype is commonly parsed from input, so to ensure valid input and a correct parser, the values need to be checked for type correctness, and for valid ranges. Later on, instances of this datatype are compared to each other, making the type of their values all the more important, since all terms compare. From the erlang reference manual
number < atom < reference < fun < port < pid < tuple < list < bit string