I'm learning the concept of neural networks. I decided to try making the neuron class by myself. What is the best way to implement different activation functions in my code? Now it uses only the binary step function. It's my first try in coding neural networks so if you have any suggestions about my code, or it is completely dumb, please let me know.
Here is my code:
public class Neuron {
// properties
private ArrayList<Neuron> input;
private ArrayList<Float> weight;
private float pot, bias, sense, out;
private boolean checked;
// methods
public float fire(){
pot = 0f;
if (input != null) {
for (Neuron n : input){
if (!n.getChecked()){
pot += n.fire()*weight.get(input.indexOf(n));
} else {
pot += n.getOut()*weight.get(input.indexOf(n));
} // end of condition (checked)
} // end of loop (for input)
} // end of condition (input exists)
checked = true;
pot -= bias;
pot += sense;
out = actFunc(pot);
return out;
} // end of fire()
// getting properties
public float getPot(){return pot;}
public boolean getChecked(){return checked;}
public float getOut(){return out;}
// setting properties
public void stimulate(float f){sense = f;}
public void setBias(float b){bias = b;}
public void setChecked(boolean c){checked = c;}
public void setOut(float o){out = o;}
// connection
public void connect(Neuron n, float w){
input.add(n);
weight.add(w);
}
public void deconnect(Neuron n){
weight.remove(input.indexOf(n));
input.remove(n);
}
// activation function
private float actFunc(float x){
if (x < 0) {
return 0f;
} else {
return 1f;
}
}
// constructor
public Neuron(Neuron[] ns, float[] ws, float b, float o){
if (ns != null){
input = new ArrayList<Neuron>();
weight = new ArrayList<Float>();
for (Neuron n : ns) input.add(n);
for (int i = 0; i < ws.length; i++) weight.add(ws[i]);
} else {
input = null;
weight = null;
}
bias = b;
out = o;
}
public Neuron(Neuron[] ns){
if (ns != null){
input = new ArrayList<Neuron>();
weight = new ArrayList<Float>();
for (Neuron n : ns) input.add(n);
for (int i = 0; i < input.size(); i++) weight.add((float)Math.random()*2f-1f);
} else {
input = null;
weight = null;
}
bias = (float)Math.random();
out = (float)Math.random();
}
}