This is a fairly straightforward question, but I am new to the field. Using this tutorial I have a great way of detecting certain patterns or features. However, the images I'm testing are large and often the feature I'm looking for only occupies a small fraction of the image. When I run it on the entire picture the classification is bad, though when zoomed it and cropped the classification is good.
I've considered writing a script that breaks an image into many different images and runs the test on all (time isn't a huge concern). However, this still seems inefficient and unideal. I'm wondering about suggestions for the best, but also easiest to implement, solution for this.
I'm using Python.