There appears to be a major difference between numpy's slogdet and the exact result when computing the log determinant of Vanermonde matrix.
I compare against the exact log determinant, see eg here for proof.
The minimal code to see this is:
A = np.power.outer(np.linspace(0,1,50),range(50))
print np.linalg.slogdet(A)[1]
s = 0
for v1 in np.linspace(0,1,50):
for v2 in np.linspace(0,1,50):
if v1>v2:
s+= np.log(v1-v2)
print s
Which yeilds:
-1191.88408998
-1706.99560647
I was wondering if there was a more accurate log determinant implementation which I could use in this situation but also in non-Vandermonde matrix situation.