So I have a tensor h_in
of shape (50, ?, 1, 100)
that I should now like to turn into shape (50, 1, 1, 100)
by taking the max over the axis 1
.
How do I do that?
I tried
h_out = max_pool(h_in)
with
def max_pool(h,ksize=[1,-1,1,1],strides=[1,1,1,1],padding='VALID'):
return tf.nn.max_pool(h,ksize=ksize,strides=strides,padding=padding)
but that doesn't seem to reduce the size.
runnable example:
import tensorflow as tf
import numpy as np
import numpy.random as nprand
def _weight_variable(shape,name):
initial = tf.truncated_normal(shape,stddev=0.1)
v = tf.Variable(initial,name=name)
return v
def _bias_variable(shape,name):
initial = tf.constant(0.1,shape=shape)
v = tf.Variable(initial,name=name)
return v
def _embedding_variable(shape,name):
initial = tf.truncated_normal(shape)
v = tf.Variable(initial,name=name)
return v
def conv2d(x,W,strides=[1,1,1,1],padding='VALID'):
return tf.nn.conv2d(x,W,strides=strides,padding=padding)
def max_pool(h,ksize=[1,-1,1,1],strides=[1,1,1,1],padding='VALID'):
return tf.nn.max_pool(h,ksize=ksize,strides=strides,padding=padding)
nof_embeddings= 55000
dim_embeddings = 300
batch_size = 50
filter_size = 100
x_input = tf.placeholder(tf.int32, shape=[batch_size, None])
def _model():
embeddings = _embedding_variable([nof_embeddings,dim_embeddings],'embeddings')
h_lookup = tf.nn.embedding_lookup(embeddings,x_input)
h_embed = tf.reshape(h_lookup,[batch_size,-1,dim_embeddings,1])
f = 3
W_conv1f = _weight_variable([f,dim_embeddings,1,filter_size],f'W_conv1_{f}')
b_conv1f = _bias_variable([filter_size],f'b_conv1_{f}')
h_conv1f = tf.nn.relu(conv2d(h_embed,W_conv1f) + b_conv1f)
h_pool1f = max_pool(h_conv1f)
print("h_embed:",h_embed.get_shape())
print()
print(f'h_conv1_{f}:',h_conv1f.get_shape())
print(f'h_pool1_{f}:',h_pool1f.get_shape())
print()
return tf.shape(h_pool1f)
if __name__ == '__main__':
tensor_length = 35
model = _model()
with tf.Session() as sess:
tf.global_variables_initializer().run()
batch = nprand.randint(0,nof_embeddings,size=[batch_size,tensor_length])
shape = sess.run(model,
feed_dict ={
x_input : batch
})
print('result:',shape)
which outputs
h_embed: (50, ?, 300, 1)
h_conv1_3: (50, ?, 1, 100)
h_pool1_3: (50, ?, 1, 100)
result: [ 50 35 1 100]
Let's say I instead hardcode the size that I want:
h_pool1f = max_pool(h_conv1f,ksize=[1,35-f+1,1,1])
That works.
But now I'm in trouble as soon as I change the tensor_length
(which is determined at runtime, so no, I cannot hardcode it).
One "solution" would be to blow the input up to a fixed maximum length by padding, or something, but then again, that introduces unnecessary computations and an artificial cap, both of which I should very much like to avoid.
So, is there
- a way to make tensorflow "correctly" recognise the
-1
ink_size
? - or another way to compute the max?