0

I am having some issues getting this data to be a time series for a holt-winter model. I don't know what to do next.

library(reshape)
library(tidyr)

tempdata = as.matrix(read.table("https://d37djvu3ytnwxt.cloudfront.net/assets/courseware/v1/592f3be3e90d2bdfe6a69f62374a1250/asset-v1:GTx+ISYE6501x+2T2017+type@asset+block/temps.txt", header = TRUE, row.names = 1))

#melt data for time series

tempdata.ts <- melt(tempdata, id=1:1)

#concatenate Date and Year

tempdata.ts <- tempdata.ts %>% unite(col = "Date", c(X1, X2)) 
nitcob
  • 1
  • 2

1 Answers1

0

I suppose you want to fit HoltWinters from stats. This function requires ts object.

library(dplyr)
library(tidyr)
library(lubridate)

First, reshape data:

file <- "https://d37djvu3ytnwxt.cloudfront.net/assets/courseware/v1/592f3be3e90d2bdfe6a69f62374a1250/asset-v1:GTx+ISYE6501x+2T2017+type@asset+block/temps.txt"

read.table(file, header = TRUE, row.names = 1) %>% 
 as.data.frame() %>%
 mutate(DayMonth = rownames(.)) %>%
 gather(Date, Value, -DayMonth) %>%
 unite("Date", c(DayMonth, Date) ) %>% 
 mutate(Date = dmy(Date) ) -> tempData

Create time-series object:

tsData <- as.ts(
 tempData$Value, start = min(tempData$Date), end = max(tempData$Date),
 frequency = 365)
Lstat
  • 1,450
  • 1
  • 12
  • 18