Understanding how generators work (and why they are less important in swift) is at first difficult coming from Python.
Up to Swift v2.1 there was a protocol called GeneratorType. This was renamed to IteratorProtocol in Swift v3.0+. You can conform to this protocol to make your own objects that do just-in-time computations similar to what can be done in Python.
More information can be found in the Apple Documentation: IteratorProtocol
A simple example from IteratorProtocol page:
struct CountdownIterator: IteratorProtocol {
let countdown: Countdown
var times = 0
init(_ countdown: Countdown) {
self.countdown = countdown
}
mutating func next() -> Int? {
let nextNumber = countdown.start - times
guard nextNumber > 0
else { return nil }
times += 1
return nextNumber
}
}
let threeTwoOne = Countdown(start: 3)
for count in threeTwoOne {
print("\(count)...")
}
// Prints "3..."
// Prints "2..."
// Prints "1..."
However, you need to think about why you are using a generator:
Swift automatically does something "called copy on write." This means that many of the cases that use a Python generator to avoid the large copying cost of collections of objects (arrays, lists, dictionaries, etc) are unnecessary in Swift. You get this for free by using one of the types that use copy on write.
Which value types in Swift supports copy-on-write?
It is also possible to use a wrapper to force almost any object to be copy on write, even if it is not part of a collection:
How can I make a container with copy-on-write semantics?
The optimizations in swift usually mean that you do not not have to write generators. If you really do need to (usually because of data heavy, scientific calculations) it is possible as above.