I have to prove that the language L = {< M >: |L(M)| <= 2016} is NOT semi-decidable. Now I thought of doing it like this:
Take a random alfabet E. Now there are an infinite number of words in E. We can only conclude that |L(M)| <= 2016 by passing every word from E* as an input to M. But because there are an infinite number of words, this means that we would have to pass an input to M an infinite number of times. But this implies that Turing Machine that performs these checks ends up in an infinite loop, and thus never returns accepts nor rejects it's input. The language L is thus not semi-decidable.
But I think that this might not be formal enough? Mainly because I just assume that the Turing Machine that checks this language will let M run on every word from E*. Is this assumption valid, or should I be more formal in this?