Interesting question. Let's ignore the abs
calculation, as it's not relevant a lot of the time with just prices. If your concern is performance, here is a set of timings to consider for the current suggestions:
library(microbenchmark)
sample.xts <- xts(order.by = as.POSIXct("2004-01-01 00:00:00") + 1:1e6, matrix(rnorm(1e6 *4), ncol = 4), dimnames = list(NULL, c("A", "B", "C", "D")))
# See how quickly rowSum works on just the underlying matrix of data in the timings below:
xx <- coredata(sample.xts)
microbenchmark(
coredata(sample.xts),
rowSums(xx),
rowSums(sample.xts),
rowSums(coredata(sample.xts)),
.xts(x = rowSums(sample.xts), .index(sample.xts)),
xts(rowSums(coredata(sample.xts)), index(sample.xts)),
xts(rowSums(sample.xts),index(sample.xts)),
Reduce("+", as.list(sample.xts)), times = 100)
# Unit: milliseconds
# expr min lq mean median uq max neval
# coredata(sample.xts) 2.558479 2.661242 6.884048 2.817607 6.356423 104.57993 100
# rowSums(xx) 10.314719 10.824184 11.872108 11.289788 12.382614 18.39334 100
# rowSums(sample.xts) 10.358009 10.887609 11.814267 11.335977 12.387085 17.16193 100
# rowSums(coredata(sample.xts)) 12.916714 13.839761 18.968731 15.950048 17.836838 113.78552 100
# .xts(x = rowSums(sample.xts), .index(sample.xts)) 14.402382 15.764736 20.307027 17.808984 19.072600 114.24039 100
# xts(rowSums(coredata(sample.xts)), index(sample.xts)) 20.490542 24.183286 34.251031 25.566188 27.900599 125.93967 100
# xts(rowSums(sample.xts), index(sample.xts)) 17.436137 19.087269 25.259143 21.923877 22.805013 119.60638 100
# Reduce("+", as.list(sample.xts)) 21.745574 26.075326 41.696152 27.669601 30.442397 136.38650 100
y = .xts(x = rowSums(sample.xts), .index(sample.xts))
y2 = xts(rowSums(sample.xts),index(sample.xts))
all.equal(y, y2)
#[1] TRUE
coredata(sample.xts)
returns the underlying numeric matrix. I think the fastest performance you can expect is given by rowSums(xx)
for doing the computation, which can be considered a "benchmark". The question is then, what's the quickest way to do it in an xts
object. It seems
.xts(x = rowSums(sample.xts), .index(sample.xts))
gives decent performance.