I would like to compare which are the 5 most similar images to an input image.
To do this I thought to use the SIFT (VLFeat library) and compare the respective descriptors.
So I use the vl_ubcmatch
(doc here) method to calculate the similarity measurement between the images.
This is the code:
path_dir = './img/';
imgs = dir(path_dir);
imgs = imgs(3 : end);
numImgs = size(imgs);
numImgs = numImgs(1);
path1 = './img/car01.jpg';
Ia = imread(path1);
Ia = single(rgb2gray(Ia));
[fa, da] = vl_sift(Ia);
results = struct;
m = 0;
j = 1; % indice dell'img (del for)
for img = imgs'
path = strcat(path_dir, img.name);
if(strcmp(path1, path) == 0)
Ib = imread(path);
Ib = single(rgb2gray(Ib));
[fb, db] = vl_sift(Ib);
[matches, scores] = vl_ubcmatch(da, db);
s = sum(scores);
[r, c] = size(scores);
m = s ./ c;
results(j).measure = m;
results(j).img = path;
j = j + 1;
end
end
As you can see from the code, I thought I would use the mean as a measure of similarity but the results I get are not satisfactory (for example, it tells me that the input image of a cup is more similar to a tree than another cup).
According to you, is it better to have more equal descriptors but with low similar or less similar descriptors but with greater similarity? I have 50 images of 5 different categories (cups, trees, people, tables and cars) and, given an image as input, the program will return the 5 most similar images to it and preferably belonging to the same category.
What measurement can I use instead of the mean to get a more precise classification? Thanks!