I'm able now to create and teach single layer rnn-s with Chainer, but I run into errors when I try to expand my network. Here is my code, I commented out the 2. hidden layer part, so this should run as a single layer net
#Regression
class Regression(Chain):
def __init__(self, predictor):
super(Regression, self).__init__(predictor=predictor)
def __call__(self, x, t):
y = self.predictor(x)
loss = F.mean_squared_error(y, t)
report({'loss': loss}, self)
return loss
#return loss
#%%
#RNN
class RNN(Chain):
def __init__(self):
super(RNN, self).__init__(
lstm=L.LSTM(12, 50), #
# lstm2=L.LSTM(100, 100),
out=L.Linear(50, 1), #
)
def reset_state(self):
self.lstm.reset_state()
#self.lstm2.reset_state()
def __call__(self, x):
h = self.lstm(x)
# h2 = self.lstm(h)
y = self.out(h2)
return y
Error: unindent does not match any outer indentation level on row : h2 = self.lstm(h)
what Mi doing wrong?