Given an invertible matrix M over the rationals Q, the inverse matrix M^(-1) is again a matrix over Q. Are their (efficient) libraries to compute the inverse precisely?
I am aware of high-performance linear algebra libraries such as BLAS/LAPACK, but these libraries are based on floating point arithmetic and are thus not suitable for computing precise (analytical) solutions.
Motivation: I want to compute the absorption probabilities of a large absorbing Markov chain using its fundamental matrix. I would like to do so precisely.
Details: By large, I mean a 1000x1000 matrix in the best case, and a several million dimensional matrix in the worst case. The further I can scale things the better. (I realize that the worst case is likely far out of reach.)