How can I estimate/fit parameters for exponentially modified Gaussian distribution (exGaussian) using JAVA/Android?
I need something like following pseudo code:
// some observed data points
double dataPoints[] = {200,300,400,278,366,466,325,335,322,332};
// ex-gaussian distribution
ExponentiallyModifiedGaussianDistribution exGaussian = new ExponentiallyModifiedGaussianDistribution();
// MLE
MaximumLikelihoodEstimation MLE = new MaximumLikelihoodEstimation(dataPoints, exGaussian);
MLE.setGuess(3.0, 1.0, 1.0);
MLE.compute();
// get estimated / fitted parameters
double[] parameterEstimates = MLE.getEstimates();
There are some examples demonstrating parameter estimation for the Gamma Distribution. But this lib seems to be not open source.
And I have found an ex-gaussian distribution implementation in JAVA. But the parameter estimation is missing.
I think there are a lot of ways to estimate parameters e.g. using maximum likelihood estimates (MLE) etc.
Update 1:
I will avoid to use less than 40 dataPoints.
Update 2:
An easy alternative to estimate the parameters of the distribution is the method of moments estimation (described on wiki)