This type of pattern is very easy to express in Coq, although setting up the infrastructure to do so might take some effort.
First, we define a proposition that expresses that all propositions in a list are equivalent:
Require Import Coq.Lists.List. Import ListNotations.
Definition all_equivalent (Ps : list Prop) : Prop :=
forall n m : nat, nth n Ps False -> nth m Ps True.
Next, we want to capture the standard pattern for proving this kind of result: if each proposition in the list implies the next one, and the last implies the first, we know they are all equivalent. (We could also have a more general pattern, where we replace a straight list of implications with a graph of implications between the propositions, whose transitive closure generates a complete graph. We'll avoid that in the interest of simplicity.) The premise of this pattern is easy to express; it is just a code transcription of the English explanation above.
Fixpoint all_equivalent'_aux
(first current : Prop) (rest : list Prop) : Prop :=
match rest with
| [] => current -> first
| P :: rest' => (current -> P) /\ all_equivalent'_aux first P rest'
end.
Definition all_equivalent' (Ps : list Prop) : Prop :=
match Ps with
| first :: second :: rest =>
(first -> second) /\ all_equivalent' first second rest
| _ => True
end.
The difficult part is showing that this premise implies the conclusion we want:
Lemma all_equivalentP Ps : all_equivalent' Ps -> all_equivalent Ps.
Showing that this lemma holds probably requires some ingenuity to find a strong enough inductive generalization. I can't quite prove it right now, but might add a solution later to the answer if you want.