For a side project I am working on I currently have to deal with an abstract syntax tree and transform it according to rules (the specifics are unimportant).
The AST itself is nontrivial, meaning it has subexpressions which are restricted to some types only. (e.g. the operator A
must take an argument which is of type B
only, not any Expr
. A drastically simplified reduced version of my datatype looks like this:
data Expr = List [Expr]
| Strange Str
| Literal Lit
data Str = A Expr
| B Expr
| C Lit
| D String
| E [Expr]
data Lit = Int Int
| String String
My goal is to factor out the explicit recursion and rely on recursion schemes instead, as demonstrated in these two excellent blog posts, which provide very powerful general-purpose tools to operate on my AST. Applying the necessary factoring, we end up with:
data ExprF a = List [a]
| Strange (StrF a)
| Literal (LitF a)
data StrF a = A a
| B a
| C (LitF a)
| D String
| E [a]
data LitF a = Int Int
| String String
If I didn't mess up, type Expr = Fix ExprF
should now be isomorphic to the previously defined Expr
.
However, writing cata
for these cases becomes rather tedious, as I have to pattern match B a :: StrF a
inside of an Str :: ExprF a
for cata
to be well-typed. For the entire original AST this is unfeasible.
I stumbled upon fixing GADTs, which seems to me like it is a solution to my problem, however the user-unfriendly interface of the duplicated higher-order type classes etc. is quite the unneccessary boilerplate.
So, to sum up my questions:
- Is rewriting the AST as a GADT the correct way to go about this?
- If yes, how could I transform the example into a well-working version? On a second note, is there better support for higher kinded
Functor
s in GHC now?