I have used the package lsmeans in R to get the average estimate for all observations for my treatment factor (across the levels of a block factor in the experimental design that has been included with systematic effect because it only had 3 levels). I have used a sqrt transformation for my response variable.
Thus I have used the following commands in R.
First defining model
model<-sqrt(response)~treatment+block
Then applying lsmeans
model_lsmeans<-lsmeans(model,~treatment)
Then plotting this
plot(model_lsmeans,ylab="treatment", xlab="response(with 95% CI)")
This gives a very nice graph with estimates and 95% confidense intervals for the different treatment.
The problems is just that this graph is for the transformed response.
How do I get this same plot with the backtransformed response (so the squared response)?
I have tried to create a new data frame and extract the lsmean, lower.CL, and upper.CL:
a<-summary(model_lsmeans)
New_dataframe<-as.data.frame(a[c("treatment","lsmean","lower.CL","upper.CL")])
And then make these squared
New_dataframe$lsmean<-New_dataframe$lsmean^2
New_dataframe$lower.CL<-New_dataframe$lower.CL^2
New_dataframe$upper.CL<-New_dataframe$upper.CL^2
New_dataframe
This gives me the estimates and CI boundaries squared that I need.
The problem is that I cannot make the same graph for thise estimates and CI as the one that I did in LS means above.
How can I do this? The reason that I ask is that I want to have graphs that are all of a similar style for my article. Since I very much like this LSmeans plot, and it is very convenient for me to use on the non-transformed response variables, I would like to have all my graphs in this style.
Thank you very much for your help! Hope everything is clear!
Kind regards
Ditlev