I wanted to calculate the number of solutions of the equation, but I am unable to get any lead. The equation is:
All I could get is by doing something like,
But I don't know how to proceed on this.
I wanted to calculate the number of solutions of the equation, but I am unable to get any lead. The equation is:
All I could get is by doing something like,
But I don't know how to proceed on this.
I'd try solving this by using dynamic programming.
Here's some pseudocode to get you started:
Procedure num_solutions(n, k, m):
# Initialize memoization cache:
if this function has been called for the first time:
initialize memo_cache with (n+1)*(k+1)*(m+1) elements, all set to -1
# Return cached solution if available
if memo_cache[n][k][m] is not -1:
return memo_cache[n][k][m]
# Edge case:
if m is equal to 1:
# Solution only exists if 1 <= m <= k
if n >= 1 and n <= k, set memo_cache[n][k][m] to 1 and return 1
otherwise set memo_cache[n][k][m] to 0 and return 0
# Degenerate case: No solution possible if n<m or n>k*m
if n < m or n > k * m:
set memo_cache[n][k][m] to 0 and return 0
# Call recursively for a solution with m-1 elements
set sum to 0
for all i in range 1..k:
sum = sum + num_solutions(n - i, k, m - 1)
set memo_cache[n][k][m] to sum and return sum