For example, in generative adversarial network, we often hear that inference is easy because the conditional distribution of x given latent variable z is 'tractable'.
Also, I read somewhere that Boltzmann machine and variational autoencoder is used where the posterior distribution is not tractable so some sort of approximation need to be applied.
Could anyone tell me what 'tractable' means, in a rigorous definition? Or could anyone explain in any of the examples I gave above, what tractable exactly means in that context?

- 8,084
- 8
- 48
- 62

- 101
- 4
1 Answers
First of all, let's define what tractable and intractable problems are (Reference: http://www.cs.ucc.ie/~dgb/courses/toc/handout29.pdf).
Tractable Problem: a problem that is solvable by a polynomial-time algorithm. The upper bound is polynomial.
Intractable Problem: a problem that cannot be solved by a polynomial-time algorithm. The lower bound is exponential.
From this perspective, a definition for tractable distribution is that it takes polynomial-time to calculate the probability of this distribution at any given point.
If a distribution is in a closed-form expression, the probability of this distribution can definitely be calculated in polynomial-time, which, in the world of academia, means the distribution is tractable. Intractable distributions take equal to or more than exponential-time, which usually means that with existing computational resources, we can never calculate the probability at a given point with relatively "short" time (any time longer than polynomial-time is long...).