This is my state dataframe:
>> state_df.head()
A B C
0 -1.469587 -1.186974 -1.136587
1 -1.310300 -1.032667 -1.389515
2 -0.041564 -0.112118 -0.742551
3 0.698519 0.453808 -0.194451
4 0.653907 0.425225 -0.157008
Each column is kind of index(in finance) getting from my data set. I'm gonna combine each row and set it as a state
like this:
for i in len(state_df):
state_list = np.array(indicators_df.ix[i].tolist())
x = np.reshape(state, [-1, input_size])
session.run(self._Qpred, feed_dict={self._X: x})
.
.
.
.
And these state
gonna be input of DQN(Deep Q-Network)
.
But each column doesn't follow normal distribution. Their mean()
and std()
like this :
state_df['A'].mean() => 1.0023571097367265
state_df['A'].std() => 0.039181434958815514
state_df['B'].mean() => 0.08110446799218411
state_df['B'].std() => 0.643645664287425
state_df['C'].mean() => 0.006230702891531177
state_df['C'].std() => 0.06876011348732677
I wonder that I must standardize each column ( (x - mu) / sigma)...
Do I have to?